Documentation

LeanTQI.VectorNorm

theorem ENNReal.toReal_lt_toReal_if (p : ENNReal) (q : ENNReal) (hp : p ) (hq : q ) (h : p < q) :
p.toReal < q.toReal
theorem ENNReal.ge_one_ne_zero (p : ENNReal) [Fact (1 p)] :
p 0
theorem ENNReal.ge_one_toReal_ne_zero (p : ENNReal) [Fact (1 p)] (hp : p ) :
p.toReal 0
theorem Finset.single_le_row {α : Type u_5} {m : Type u_7} {n : Type u_8} [Fintype n] [OrderedAddCommMonoid α] (M : mnα) (h : ∀ (i : m) (j : n), 0 M i j) (i : m) (j : n) :
M i j k : n, M i k
theorem Finset.row_le_sum {α : Type u_5} {m : Type u_7} {n : Type u_8} [Fintype m] [Fintype n] [OrderedAddCommMonoid α] (M : mnα) (h : ∀ (i : m) (j : n), 0 M i j) (i : m) :
j : n, M i j k : m, l : n, M k l
theorem Finset.single_le_sum' {α : Type u_5} {m : Type u_7} {n : Type u_8} [Fintype m] [Fintype n] [OrderedAddCommMonoid α] (M : mnα) (h : ∀ (i : m) (j : n), 0 M i j) (i : m) (j : n) :
M i j k : m, l : n, M k l
theorem Finset.sum_sum_le_sum_sum {α : Type u_5} {m : Type u_7} {n : Type u_8} [Fintype m] [Fintype n] [OrderedAddCommMonoid α] (f : mnα) (g : mnα) (h : ∀ (i : m) (j : n), f i j g i j) :
i : m, j : n, f i j i : m, j : n, g i j
theorem Finset.sum_sum_nonneg {α : Type u_5} {m : Type u_7} {n : Type u_8} [Fintype m] [Fintype n] [OrderedAddCommMonoid α] (f : mnα) (h : ∀ (i : m) (j : n), 0 f i j) :
0 i : m, j : n, f i j
@[reducible, inline]
abbrev Matrix.MatrixP (m : Type u_10) (n : Type u_11) (α : Type u_12) (_p : ENNReal) :
Type (max u_10 u_11 u_12)

synonym for matrix with lp norm

Equations
Instances For
    def Matrix.LpNorm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (p : ENNReal) (M : Matrix m n 𝕂) :

    a function of lpnorm, of which LpNorm p M = ‖M‖ for p

    Equations
    Instances For
      def Matrix.LpNNNorm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (p : ENNReal) (M : Matrix m n 𝕂) :

      a function of lpnorm, of which LpNorm p M = ‖M‖₊ for p

      Equations
      Instances For
        def Matrix.lpMatrixSeminormedAddCommGroup {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [Fintype m] [Fintype n] [Fact (1 p)] [SeminormedAddCommGroup 𝕂] :

        Seminormed group instance (using lp norm) for matrices over a seminormed group. Not declared as an instance because there are several natural choices for defining the norm of a matrix.

        Equations
        Instances For
          def Matrix.lpMatrixNormedAddCommGroup {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [Fintype m] [Fintype n] [Fact (1 p)] [NormedAddCommGroup 𝕂] :

          Normed group instance (using lp norm) for matrices over a normed group. Not declared as an instance because there are several natural choices for defining the norm of a matrix.

          Equations
          Instances For
            def Matrix.lpMatrixNormedSpace {𝕂 : Type u_1} {R : Type u_6} {m : Type u_7} {n : Type u_8} (p : ENNReal) [Fintype m] [Fintype n] [Fact (1 p)] [NormedField R] [SeminormedAddCommGroup 𝕂] [NormedSpace R 𝕂] :

            Normed space instance (using lp norm) for matrices over a normed space. Not declared as an instance because there are several natural choices for defining the norm of a matrix.

            Equations
            Instances For
              @[simp]
              theorem Matrix.lp_nnnorm_def {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix.MatrixP m n 𝕂 p) (hp : p ) :
              M‖₊ = (∑ i : m, j : n, M i j‖₊ ^ p.toReal) ^ (1 / p.toReal)
              @[simp]
              theorem Matrix.lp_norm_eq_ciSup {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix.MatrixP m n 𝕂 p) (hp : p = ) :
              M = ⨆ (i : m), ⨆ (j : n), M i j
              @[simp]
              theorem Matrix.lpnorm_eq_ciSup {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) (hp : p = ) :
              Matrix.LpNorm p M = ⨆ (i : m), ⨆ (j : n), M i j
              @[simp]
              theorem Matrix.lp_norm_def {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix.MatrixP m n 𝕂 p) (hp : p ) :
              M = (∑ i : m, j : n, M i j ^ p.toReal) ^ (1 / p.toReal)
              @[simp]
              theorem Matrix.lpnorm_def {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) (hp : p ) :
              Matrix.LpNorm p M = (∑ i : m, j : n, M i j ^ p.toReal) ^ (1 / p.toReal)
              @[simp]
              theorem Matrix.lp_nnnorm_eq_ciSup {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix.MatrixP m n 𝕂 p) (hp : p = ) :
              M‖₊ = ⨆ (i : m), ⨆ (j : n), M i j‖₊
              theorem Matrix.lp_norm_eq_lpnorm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) :
              theorem Matrix.lpnorm_triangle {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) (N : Matrix m n 𝕂) :
              theorem Matrix.lpnorm_continuous_at_m {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] :
              theorem Matrix.lpnorm_tendsto_maxnorm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (h : p = ) (M : Matrix m n 𝕂) :
              (∑ i : m, j : n, M i j ^ p.toReal) ^ (1 / p.toReal) = ⨆ (i : m), ⨆ (j : n), M i j
              theorem Matrix.le_iSup {m : Type u_7} {n : Type u_8} [Fintype m] (f : mn) (i : m) :
              f i ⨆ (i : m), f i
              theorem Matrix.le_iSup' {m : Type u_7} {n : Type u_8} [Fintype n] (f : mn) (j : n) :
              (fun (x : m) => f x j) ⨆ (j : n), fun (x : m) => f x j
              theorem Matrix.le_iSup_iSup {m : Type u_7} {n : Type u_8} [Fintype m] [Fintype n] (f : mn) (i : m) (j : n) :
              f i j ⨆ (i : m), ⨆ (j : n), f i j
              theorem Matrix.le_iSup_iSup' {m : Type u_7} {n : Type u_8} [Fintype m] [Fintype n] (f : mn) (i : m) (j : n) :
              f i j ⨆ (j : n), ⨆ (i : m), f i j
              theorem Matrix.iSup_iSup_nonneg {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] (M : Matrix m n 𝕂) :
              0 ⨆ (i : m), ⨆ (j : n), M i j
              theorem Matrix.elem_le_iSup_iSup {m : Type u_7} {n : Type u_8} [Fintype m] [Fintype n] (f : mn) (i : m) (j : n) :
              f i j ⨆ (i : m), ⨆ (j : n), f i j
              theorem Matrix.elem_le_iSup_iSup' {m : Type u_7} {n : Type u_8} [Fintype m] [Fintype n] (f : mn) (i : m) (j : n) :
              f i j ⨆ (j : n), ⨆ (i : m), f i j
              theorem Matrix.iSup_comm' {m : Type u_7} {n : Type u_8} [Fintype m] [Fintype n] (f : mn) (h : ∀ (i : m) (j : n), 0 f i j) :
              ⨆ (i : m), ⨆ (j : n), f i j = ⨆ (j : n), ⨆ (i : m), f i j
              theorem Matrix.lpnorm_eq0_iff {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) :
              Matrix.LpNorm p M = 0 M = 0
              theorem Matrix.lpnorm_nonneg {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) :
              theorem Matrix.lpnorm_rpow_nonneg {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) :
              0 i : m, j : n, M i j ^ p.toReal
              theorem Matrix.lpnorm_rpow_ne0 {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) (h : Matrix.LpNorm p M 0) (h' : p ) :
              i : m, j : n, M i j ^ p.toReal 0
              theorem Matrix.lpnorm_rpow_pos {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) (h : Matrix.LpNorm p M 0) (h' : p ) :
              0 < i : m, j : n, M i j ^ p.toReal
              theorem Matrix.lpnorm_p_one_nonneg {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) :
              0 i : m, j : n, M i j
              theorem Matrix.lpnorm_p_one_ne0 {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) (h : M 0) :
              i : m, j : n, M i j 0
              theorem Matrix.lpnorm_p_one_pos {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) (h : M 0) :
              0 < i : m, j : n, M i j
              theorem Matrix.norm_rpow_rpow_inv {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fact (1 p)] (M : Matrix m n 𝕂) (i : m) (j : n) (h : ¬p = ) :
              M i j = (M i j ^ p.toReal) ^ p.toReal⁻¹
              theorem Matrix.lpnorm_elem_le_norm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) (i : m) (j : n) :
              theorem Matrix.lpnorm_elem_div_norm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) (i : m) (j : n) :
              theorem Matrix.lpnorm_antimono {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) (p₁ : ENNReal) (p₂ : ENNReal) [Fact (1 p₁)] [Fact (1 p₂)] (h₁ : p₁ ) (h₂ : p₂ ) (ple : p₁ p₂) :
              theorem Matrix.lpnorm_antimono' {m : Type u_7} [Fintype m] (p₁ : ) (p₂ : ) (hp₁ : 1 p₁) (hp₂ : 1 p₂) (ple : p₁ p₂) (f : m) (hf : ∀ (i : m), 0 f i) :
              (∑ i : m, f i ^ p₂) ^ p₂⁻¹ (∑ i : m, f i ^ p₁) ^ p₁⁻¹
              @[simp]
              theorem Matrix.lpnorm_transpose {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix.MatrixP m n 𝕂 p) :
              theorem Matrix.lpnorm_diag {𝕂 : Type u_1} {m : Type u_7} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fact (1 p)] [DecidableEq m] (d : m𝕂) (h : p ) :
              Matrix.LpNorm p (Matrix.diagonal d) = (∑ i : m, d i ^ p.toReal) ^ (1 / p.toReal)
              @[simp]
              theorem Matrix.lpnorm_conjugate {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix.MatrixP m n 𝕂 p) :
              @[simp]
              theorem Matrix.lpnorm_conjTranspose {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [DecidableEq m] [DecidableEq n] (M : Matrix.MatrixP m n 𝕂 p) :
              theorem Matrix.lpnorm_continuous_at_p {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (A : Matrix m n 𝕂) :
              ContinuousOn (fun (p : ENNReal) => Matrix.LpNorm p A) {p : ENNReal | 1 p p }
              theorem Matrix.lpnorm_mul_le {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} {l : Type u_9} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fintype l] [Fact (1 p)] (A : Matrix m n 𝕂) (B : Matrix n l 𝕂) (ple2 : p 2) (h : p ) :
              theorem Matrix.lpnorm_mul_le_lpnorm_pq {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} {l : Type u_9} [RCLike 𝕂] [Fintype m] [Fintype n] [Fintype l] (A : Matrix m n 𝕂) (B : Matrix n l 𝕂) (p : ENNReal) (q : ENNReal) [Fact (1 p)] [Fact (1 q)] (pge2 : 2 p) (h : p.toReal.IsConjExponent q.toReal) (hp : p ) (hq : q ) :
              theorem Matrix.lpnorm_mul_le_lpnorm_qp {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} {l : Type u_9} [RCLike 𝕂] [Fintype m] [Fintype n] [Fintype l] (A : Matrix m n 𝕂) (B : Matrix n l 𝕂) (p : ENNReal) (q : ENNReal) [Fact (1 p)] [Fact (1 q)] (pge2 : 2 p) (h : q.toReal.IsConjExponent p.toReal) (hp : p ) (hq : q ) :
              theorem Matrix.lpnorm_hoelder {𝕂 : Type u_1} {m : Type u_7} [RCLike 𝕂] [Fintype m] (p : ENNReal) (q : ENNReal) [Fact (1 p)] [Fact (1 q)] (h : q.toReal.IsConjExponent p.toReal) (M : Matrix Unit m 𝕂) (N : Matrix m Unit 𝕂) (hp : p ) (hq : q ) :
              theorem Matrix.lpnorm_cauchy {𝕂 : Type u_1} {m : Type u_7} [RCLike 𝕂] [Fintype m] (M : Matrix Unit m 𝕂) (N : Matrix m Unit 𝕂) :
              @[simp]
              theorem Matrix.trace_eq_l2norm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) :
              (M.conjTranspose * M).trace = (Matrix.LpNorm 2 M ^ 2)
              @[simp]
              theorem Matrix.trace_eq_l2norm' {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) :
              (M * M.conjTranspose).trace = (Matrix.LpNorm 2 M ^ 2)
              @[simp]
              theorem Matrix.left_unitary_l2norm_preserve {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] [PartialOrder 𝕂] [StarOrderedRing 𝕂] [DecidableEq m] (U : Matrix m m 𝕂) (h : U.IsUnitary) (N : Matrix m n 𝕂) :
              @[simp]
              theorem Matrix.right_unitary_l2norm_preserve {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] [PartialOrder 𝕂] [StarOrderedRing 𝕂] [DecidableEq n] (U : Matrix n n 𝕂) (h : U.IsUnitary) (N : Matrix m n 𝕂) :
              @[simp]
              theorem Matrix.l2norm_unitary {𝕂 : Type u_1} {m : Type u_7} [RCLike 𝕂] [Fintype m] [DecidableEq m] (U : Matrix m m 𝕂) (h : U.IsUnitary) :
              Matrix.LpNorm 2 U = (Fintype.card m) ^ (1 / 2)
              theorem Matrix.lpnorm_unit_default_eq1 {𝕂 : Type u_1} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype n] [Fact (1 p)] [Inhabited n] [DecidableEq n] (v : Matrix n Unit 𝕂) :
              (v = fun (i : n) (x : Unit) => if i = default then 1 else 0)Matrix.LpNorm p v = 1
              theorem Matrix.unit_nonempty {𝕂 : Type u_1} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype n] [Fact (1 p)] [Inhabited n] [DecidableEq n] :
              {v : Matrix n Unit 𝕂 | Matrix.LpNorm p v = 1}.Nonempty
              theorem Matrix.unit_bdd {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] :
              Bornology.IsBounded {v : Matrix m n 𝕂 | Matrix.LpNorm p v = 1}
              theorem Matrix.unit_closed {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] :
              IsClosed {v : Matrix m n 𝕂 | Matrix.LpNorm p v = 1}
              theorem Matrix.unit_compact {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] :
              IsCompact {v : Matrix m n 𝕂 | Matrix.LpNorm p v = 1}
              theorem Matrix.div_norm_self_norm_unit {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) (hM : M 0) :
              theorem Matrix.lpnorm_smul {𝕂 : Type u_1} {R : Type u_6} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) [NormedDivisionRing R] [MulActionWithZero R 𝕂] [BoundedSMul R 𝕂] (r : R) :
              def Matrix.IpqNorm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (p : ENNReal) (q : ENNReal) (M : Matrix m n 𝕂) :
              Equations
              Instances For
                theorem Matrix.range_on_unit_eq_range_div {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) :
                (fun (v : Matrix n Unit 𝕂) => Matrix.LpNorm q (M * v)) '' {v : Matrix n Unit 𝕂 | Matrix.LpNorm p v = 1} {0} = Set.range fun (v : Matrix n Unit 𝕂) => Matrix.LpNorm q (M * v) / Matrix.LpNorm p v
                theorem Matrix.range_on_unit_eq_range_div' {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) :
                (fun (v : Matrix n Unit 𝕂) => Matrix.LpNorm q (M * v) / Matrix.LpNorm p v * Matrix.LpNorm p v) '' {v : Matrix n Unit 𝕂 | Matrix.LpNorm p v = 1} {0} = Set.range fun (v : Matrix n Unit 𝕂) => Matrix.LpNorm q (M * v) / Matrix.LpNorm p v
                theorem Matrix.sup_on_unit_eq_sup_div {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] :
                sSup ((fun (v : Matrix n Unit 𝕂) => Matrix.LpNorm q (M * v)) '' {v : Matrix n Unit 𝕂 | Matrix.LpNorm p v = 1}) = ⨆ (v : Matrix n Unit 𝕂), Matrix.LpNorm q (M * v) / Matrix.LpNorm p v
                theorem Matrix.ipqnorm_def {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] :
                Matrix.IpqNorm p q M = ⨆ (v : Matrix n Unit 𝕂), Matrix.LpNorm q (M * v) / Matrix.LpNorm p v
                theorem Matrix.ipqnorm_nonneg {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 q)] (M : Matrix m n 𝕂) :
                theorem Matrix.ipqnorm_bddabove {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) :
                BddAbove ((fun (v : Matrix n Unit 𝕂) => Matrix.LpNorm q (M * v)) '' {v : Matrix n Unit 𝕂 | Matrix.LpNorm p v = 1})
                theorem Matrix.ipqnorm_bddabove' {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) :
                BddAbove (Set.range fun (v : Matrix n Unit 𝕂) => Matrix.LpNorm q (M * v) / Matrix.LpNorm p v)
                theorem Matrix.lqnorm_le_ipq_lp {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] (v : Matrix n Unit 𝕂) :
                theorem Matrix.lpnorm_le_ipp_lp {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] (v : Matrix n Unit 𝕂) :
                theorem Matrix.lpnorm_le_ipq_lp {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] (v : Matrix n Unit 𝕂) :
                theorem Matrix.lqnorm_div_lp_le_ipq {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] (v : Matrix n Unit 𝕂) :
                theorem Matrix.lpnorm_div_lp_le_ipq {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] (v : Matrix n Unit 𝕂) :
                theorem Matrix.ipqnorm_exists {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) [Inhabited n] [DecidableEq n] :
                v{v : Matrix n Unit 𝕂 | Matrix.LpNorm p v = 1}, Matrix.IpqNorm p q M = Matrix.LpNorm q (M * v)
                theorem Matrix.ipq_triangle {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) (N : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] :
                theorem Matrix.ipqnorm_eq0_iff {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] :
                Matrix.IpqNorm p q M = 0 M = 0
                theorem Matrix.ipqnorm_smul {𝕂 : Type u_1} {R : Type u_6} {m : Type u_7} {n : Type u_8} (p : ENNReal) (q : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fact (1 p)] [Fact (1 q)] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] (r : 𝕂) [SMul R (Matrix m n 𝕂)] [SMul R (Matrix m Unit 𝕂)] [Norm R] :
                theorem Matrix.ipq_mul_le_ipr_mul_irq {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} {l : Type u_9} (p : ENNReal) (q : ENNReal) (r : ENNReal) [RCLike 𝕂] [Fintype m] [Fintype n] [Fintype l] [Fact (1 p)] [Fact (1 q)] [Fact (1 r)] [DecidableEq l] [Inhabited l] [DecidableEq n] [Inhabited n] (M : Matrix m n 𝕂) (N : Matrix n l 𝕂) :
                @[reducible, inline]
                abbrev Matrix.IpNorm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (p : ENNReal) (M : Matrix m n 𝕂) :
                Equations
                Instances For
                  @[reducible, inline]
                  abbrev Matrix.I1Norm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) :
                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev Matrix.ItNorm {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) :
                    Equations
                    Instances For
                      theorem Matrix.i1norm_eq_max_col {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) [Nonempty n] [DecidableEq n] :
                      M.I1Norm = ⨆ (j : n), Matrix.LpNorm 1 (Matrix.col Unit fun (x : m) => M x j)
                      theorem Matrix.sum_norm_eq_norm_sum_ofreal {𝕂 : Type u_1} {n : Type u_8} [RCLike 𝕂] [Fintype n] (f : n𝕂) :
                      x : n, f x = x : n, f x
                      theorem Matrix.itnorm_eq_max_row {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] [Nonempty m] [LE 𝕂] :
                      M.ItNorm = ⨆ (i : m), Matrix.LpNorm 1 (Matrix.row Unit (M i))
                      theorem Matrix.i2tnorm_eq_max_l2norm_row {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] [LE 𝕂] [Nonempty m] :
                      Matrix.IpqNorm 2 M = ⨆ (i : m), Matrix.LpNorm 2 (Matrix.row Unit (M i))
                      theorem Matrix.i12norm_eq_max_l2norm_col {𝕂 : Type u_1} {m : Type u_7} {n : Type u_8} [RCLike 𝕂] [Fintype m] [Fintype n] (M : Matrix m n 𝕂) [DecidableEq n] [Inhabited n] :
                      Matrix.IpqNorm 1 2 M = ⨆ (j : n), Matrix.LpNorm 2 (Matrix.col Unit fun (x : m) => M x j)